多地调整烟花爆竹燃放政策 在规定时段规定区域可燃放******
多地调整烟花爆竹燃放政策 在规定时段规定区域可燃放
依法分类管理重在确保燃放安全
□ 本报记者 陈磊
2022年12月30日,辽宁省大连市政府发布《关于做好2023年烟花爆竹燃放管控工作的通告》称,控制燃放区域允许燃放时间为2023年1月14日、1月21日至1月28日、2月5日,每日7时至23时(除夕不限时)。
在此之前,《上海市公安局关于加强2023年春节期间本市烟花爆竹安全管理的通告》对外发布称,上海市外环线以外区域,除了禁止燃放烟花爆竹的场所之外,不禁止燃放烟花爆竹。北京市通州区烟花爆竹安全管理工作领导小组办公室发布致通州区全体市民的一封信,其中提到,“在北京环球度假区限定区域内燃放烟花爆竹,须经公安机关许可”。
更早些时候,山东省东营市、滨州市也明确,春节期间在部分区域和个别时间段可以燃放烟花爆竹。
有媒体统计,随着群众呼吁松绑烟花爆竹“禁燃令”之声增多,目前已有多地调整烟花爆竹燃放政策,即在规定时段、规定区域可以燃放烟花爆竹。
2023年1月3日,广东省珠海市政府发布关于废止《珠海市烟花爆竹安全管理规定》,由各区政府、经济功能区管委会依据上位法,自行划定烟花爆竹的燃放区域、时间及允许燃放的种类,并向社会公布。
值得注意的是,此前各地更为普遍的做法是禁止燃放烟花爆竹。
对此,中国人民大学法学院教授、比较行政法研究所所长杨建顺解释说,对于烟花爆竹,政府进行规制有其历史必然性。目前各地通行的“禁燃令”就有一个发展的过程:起初,政府考虑到人们的接受程度,根据安全原则,试行“限燃令”,即在一些城市进行限定燃放区域和限定燃放时间的试点,在人们逐渐适应“限燃令”之后,再施行零燃放的“禁燃令”。
杨建顺认为,从“限燃令”演变为“禁燃令”后,立法者所预留的特殊处理规则被忽略了,这种“一刀切”的零燃放措施,实际上将传统习俗之燃放烟花爆竹归为彻底禁止之列。时间久了,过春节静悄悄了,年味儿也淡了些,难免引发人们非议。
在杨建顺看来,目前多地允许规定区域、规定时间内可以燃放烟花爆竹,实质上就是对向往“人间烟火”的民意民情的回应,也是对规制烟花爆竹相关法规的贯彻落实。如此回应民众呼声的做法,体现了法规所规定的“根据本行政区域的实际情况”综合施策、分类管理的理念,有助于弘扬春节燃放烟花爆竹等传统文化民俗,增强“烟火气”。
河南农业大学政策法规办公室副主任张帅梁教授分析称,多地调整烟花爆竹燃放政策的背后,是对我国绵延上千年过年仪式中燃放烟花爆竹传统的回归和文化的传承,是回应群众过年期间期待平安健康的精神需求的回应,也是基于对我国燃放烟花爆竹带来的环境污染与安全事故不断减少、生态环境持续改善的客观认识,更是对作为我国重要产业和就业领域的烟花爆竹行业发展的支持。
在张帅梁看来,民有所呼,政有所应。虽是能否燃放烟花爆竹的“小事儿”,但也是群众向往美好生活的有机组成部分。各地对“禁燃令”的松绑,有效地解决和回应了群众诉求。同时,这也是对科学立法、民主立法的落实。
目前,我国关于燃放烟花爆竹的法律规定,主要是大气污染防治法。该法规定,任何单位和个人不得在城市人民政府禁止的时段和区域内燃放烟花爆竹。在法规层面,《烟花爆竹安全管理条例》规定,县级以上地方人民政府可以根据本行政区域的实际情况,确定限制或者禁止燃放烟花爆竹的时间、地点和种类。
这意味着,法律法规赋予县级以上地方人民政府决定在本行政区域是否禁止燃放烟花爆竹的权力。
杨建顺分析认为,法律法规的相关规定,以烟花爆竹限制燃放的制度为背景。法律法规的这种授权规定体现了科学立法的精神,遵循了各地经济和社会发展规律的管理理念。特别是《烟花爆竹管理安全条例》设置的授权规定,较大程度赋予了县级以上地方人民政府裁量判断余地,目的在于确保各地“根据本行政区域的实际情况”灵活机动地作出科学安排和部署,避免“一刀切”式的生硬施策。
杨建顺说,这就需要县级以上地方人民政府切实做好调查研究,全面、准确、客观、适时把握“本行政区域的实际情况”,依法决策、民主决策、科学决策,作出“举旗帜、聚民心、育新人、兴文化、展形象”的烟花爆竹安全管理决策、决定和举措,让人民群众在安全保障举措支持的背景下,告别零燃放的“无菌社会”,充分体味烟花爆竹等传统文化民俗的滋味儿,欢欢喜喜迎除夕、过春节、闹元宵。
张帅梁说,我国是单一制国家,地域辽阔,省域、市域、县域各有不同情势,经济社会发展存在不平衡之处,各地亟待解决的问题与需求也不尽相同。投射到立法领域,就需要在维护国家法治统一的基本前提下,允许地方在一定范围内因地制宜,因应施策。
“是‘禁’是‘限’,需要各地根据环境质量、财产安全、百姓诉求等因素的现实情况,以及解禁后可能产生的经济社会效益与风险事故等进行有效研判,并在此基础上作出科学合理的规制。”张帅梁说。
那么,具体来说,各地针对烟花爆竹管理如何把握“禁”“限”边界呢?
杨建顺认为,这是一个系统工程,不仅仅是“限放”和“禁放”的问题,而且是烟花爆竹的生产、经营、储存、运输、邮寄和燃放的全过程安全保障问题。这就要求各相关主体严格按照《烟花爆竹安全管理条例》对生产、经营、储存、运输和燃放等各个环节的规制要求,切实加强烟花爆竹安全管理,预防爆炸事故发生,保障公共安全和人身、财产的安全。
他呼吁,就烟花爆竹燃放这个环节,县级以上地方人民政府应当依法、合理地运用好法律法规所赋予的“限放”和“禁放”的裁量权,根据本行政区域的实际情况,确定限制或者禁止燃放烟花爆竹的时间、地点和种类。
他建议,一般而言,要行使好该裁量判断权,可以参考把握如下标准:城市区域倾向于禁放,农村区域倾向于限放;人员聚集密度大的区域应当禁放,人员稀少非聚集性的区域倾向于限放;高楼大厦密集区域应当禁放,非高层建筑的区域倾向于限放;威力大的烟花爆竹倾向于禁放,威力不大的烟花爆竹倾向于限放。至于“高危险性烟花爆竹产品”,宜从生产环节把好规制关等。
与此同时,一些地方也查处并公布了多起违法燃放烟花爆竹案件。例如,2023年1月1日1时许,浙江省温州市公安局鹿城分局广化派出所发现并查处一起违规燃放烟花爆竹案,现场查处9名违法行为人,依法对他们进行行政处罚。2023年元旦以来,天津市公安局宁河分局共查获非法储存烟花爆竹案件13起,违规燃放烟花爆竹案件7起。
对此,张帅梁认为,放松“禁放”,不等于完全解禁。在放松“禁放”的地区,人们有燃放烟花爆竹的自由,但这种自由是有边界、有限度的。边界就是相关地方法规与规章确定的燃放时间地点与幅度,限度就是不得损害社会公共利益以及他人合法权益。因此,违反规则、扰乱社会秩序的行为应当受到相应的处罚。(法治日报)
科学家成功合成铹的第14个同位素******
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素。铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
超重元素的合成及其结构研究是当前原子核物理研究的一个重要前沿领域。铹是可供合成并进行研究的一种超镄元素,引起了人们极大的兴趣。
近日,科研人员利用美国阿贡国家实验室充气谱仪(AGFA)成功合成了超镄新核素铹-251。相关成果发表于核物理学领域期刊《物理评论C》。
此次合成铹的新同位素,运用了什么技术方法?合成得到的铹-251,具有什么基本特征?合成的铹-251对于物理、化学等学科的研究来说具有什么意义?针对上述问题,记者采访了这一工作的主要完成人之一,中国科学院近代物理研究所副研究员黄天衡。
不断进行探索,再次合成铹同位素
铹的化学符号为Lr,原子序数为103,是第11个超铀元素,也是最后一个锕系元素。“一般来说,原子序数大于铹的元素被称为超重元素。”黄天衡介绍。
质子数相同而中子数不同的同一元素的不同核素互称为同位素。同一种元素的同位素在化学元素周期表中占有同一个位置,同位素这个名词也因此而得名。
103号元素由阿伯特·吉奥索等科研人员于1961年首次合成。为纪念著名物理学家欧内斯特·劳伦斯,103号元素被命名为铹。锕系元素是元素周期表ⅢB族中原子序数为89—103的15种化学元素的统称,其中,铹元素在锕系元素中排名最后。
截至目前,科研人员们共合成了铹的14个同位素,质量数分别为251—262、264、266。目前合成的铹的14个同位素中,铹-251至铹-262是在实验中通过熔合反应直接合成的,铹-264和铹-266则是将原子序数更高的核素通过衰变生成的。
目前,铹的化学研究中最常使用的同位素是铹-256和铹-260。科研人员通过化学实验证实铹为镥的较重同系物,具有+3氧化态,可以被归类为元素周期表第七周期中的首个过渡金属元素。由于铹的电子组态与镥并不相同,铹在元素周期表中的位置可能比预期的更具有波动性。在核结构研究方面,受限于合成截面等原因,目前的研究仅集中在铹-255上。然而即使是铹-255,其结构能级的指认目前也还存有争议。
通过熔合反应,形成新的原子核
铹和其他原子序数大于100的超镄元素一样,无法通过中子捕获生成。目前铹只能在重离子加速器中通过熔合反应合成。由于原子核都具有正电荷而会相互排斥,因此,只有当两个原子核的距离足够近的时候,强核力才能克服上述排斥并发生熔合。粒子束需要通过重离子加速器进行加速。在轰击作为靶的原子核时,粒子束的速度必须足够大,以克服原子核之间的排斥力。
“仅仅靠得足够近,还不足以使两个原子核发生熔合。两个原子核更可能会在极短的时间内发生裂变,而非形成单独的原子核。”黄天衡介绍,如果这两个原子核在相互靠近的时候没有发生裂变,而是熔合形成了一个新的原子核,此时新产生的原子核就会处于非常不稳定的激发态。为了达到更稳定的状态,新产生的原子核可能会直接裂变,或放出一些带有激发能量的粒子,从而产生稳定的原子核。
在此次实验中,科研人员利用美国阿贡国家实验室ATLAS直线加速器提供的钛-50束流轰击铊-203靶,通过熔合反应合成了目标核铹-251。这个新的原子核产生后,会和其他反应产物一起被传输到充气谱仪(AGFA)中。在充气谱仪(AGFA)中,铹-251会被电磁分离出来,并注入到半导体探测器中。探测器会对这个新原子核注入的位置、能量和时间进行标记。
“如果这个原子核接下来又发生了一系列衰变,这些衰变的位置、能量和时间将再次被记录下来,直至产生了一个已知的原子核。该原子核可以由其所发生的衰变的特定特征来识别。”黄天衡说。根据这个已知的原子核以及之前所经历的系列连续衰变的过程,科研人员可以鉴别注入探测器的原始产物是什么。
超镄新核素铹-251不仅是近20年来科研人员首次直接合成的铹的新同位素,也是迄今为止合成的中子数N为148的最重同中子异位素(具有相同中子数的核素),还是利用充气谱仪(AGFA)合成的首个新核素。目前的实验结果表明,铹-251具有α衰变性,可以发射出两个不同能量的α粒子。
拓展新的领域,推动超重核理论研究
由于形变,若干决定超重核稳定岛位置的关键轨道能级会降低到质子数Z约等于100、中子数N约等于152核区的费米面附近。对于这一核区的谱学研究可以对现有描述稳定岛的各个理论模型进行严格检验,从而进一步了解超重核稳定岛的相关性质。由于上述原因,对于这一核区的谱学研究是当下探索超重核结构性质的热点课题。
此前的理论模型均无法准确地描述这一核区铹的质子能级演化,相关的实验数据十分有限。“本次实验的初衷为把铹的结构研究进一步拓展到丰质子区,尝试开展系统性的研究。”黄天衡表示。
研究结果表明,形成超重核稳定岛的关键质子能级在铹的丰质子同位素中存在能级反转现象。此外,研究人员还通过推转壳模型下粒子数守恒方法(PNC-CSM)较好地描述了这一现象,并指出了ε_6形变在这一核区的质子能级演化中起到的重要作用。
“此次研究指出了ε_6形变在铹的丰质子核区的质子能级演化中起到的重要的作用,对现有的理论研究提出了新的挑战,将推动超重核领域相关理论研究的发展。”黄天衡说。(记者颉满斌)
(文图:赵筱尘 巫邓炎)