泸州白沙长江大桥顺利完成合龙。 卢海军 摄
大桥主跨520米,共35个钢箱梁节段,本次吊装的中跨合龙段钢箱梁长4.4米,宽30.5米,高3.5米,重90吨。运梁船在江心调整姿态、抛锚定位后,桥面吊机将最后一片钢箱梁缓缓提升至半空,在大桥的中央处完成精准对接,成功实现合龙。
泸州白沙长江大桥顺利完成合龙。 卢海军 摄泸州市白沙长江大桥自2019年11月开工建设,预计2023年5月建成通车,全长1321.7米,桥面宽27.5米,主跨520米,设定标准为双向四车道,设计时速60km/h,最外侧铺设人行道、非机动车道。
泸州白沙长江大桥顺利完成合龙。 苟儒君 摄该大桥作为泸州市重要的渡改桥项目之一,大桥南岸与国道353线连接,北岸与省道438线连接,建成后,可撤销大桥、丁石岩、白沙三个渡口,彻底消除长江渡运安全隐患,方便两岸群众安全出行,惠及群众达30万人。(完)
科研人员揭示基因转录“刹车”机制****** 中新网上海1月12日电 (记者 郑莹莹)记者从中国科学院分子植物科学卓越创新中心获悉,北京时间1月12日,中美科研团队合作在《自然》杂志上发表了一篇研究论文,该研究揭示了细菌RNA聚合酶如何识别“转录终止序列”从而终止转录的工作机制。 科研人员介绍,RNA聚合酶在执行基因转录时类似高速行驶的汽车,以大约每秒50个核苷酸的速度合成RNA,当RNA聚合酶转录至“终止序列”时,需要从高速延伸的状态“刹车”,停止转录并释放RNA。 细菌的“固有转录终止序列”是一段由大约30个至50个核苷酸碱基组成的序列。研究团队捕获了RNA聚合酶转录终止的一系列中间状态,解析了RNA聚合酶在上述转录终止中间状态的冷冻电镜三维结构。 研究发现,“转录终止序列”的多聚尿苷使RNA聚合酶“刹车”,将其固定在转录暂停状态,随后RNA发卡结构折叠进入RNA聚合酶内部,促使RNA从RNA聚合酶内部解离。 该研究回答了基因表达的基础科学问题,拓展了人们对于基因表达机制的理解。 这项研究具体由中国科学院分子植物科学卓越创新中心的张余研究团队和美国威斯康星大学麦迪逊分校(University of Wisconsin-Madison)的Robert Landick团队以及浙江大学的冯钰团队合作完成。中科院分子植物科学卓越创新中心的博士生尤琳琳(已毕业)为论文第一作者,该中心的张余研究员和威斯康星大学麦迪逊分校的Robert Landick教授以及浙江大学的冯钰研究员为共同通讯作者。(完) (文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() |